GMCP SPECIFICATION DOCUMENT

TABLE OF CONTENTS

1 MOAUIE SUPPOIT ... ieeeeiiieieieiteeeeteeneeteenneeteesseeseenseesenssessssssessensssssssssssssnssesssnssesssnsnnnns 2
000 R U o o To g =To I 1Y/ o Yo FU 1L] RS USS 2
1.2 Supported Commands PEr MOTUIEuiiiiiiie e ceee ettt et e e e e e e e et e e e e et eeeeaseeeesnsaeeessseeananes 2
2 Module DetailS.....cccoevuuummmieriiiiiiiiiiinini e 4
0 R o =P 4
B O 1 - | PRSP P PSP PR 5
2.3 CNANSKIIIS o ettt st s e r e R e r e e e r e e ne e e et 6
B O T T 1 =T o o TSP PP PSP 7
2.5 COMMLCRANNEL ..ot ettt et ettt st s e r e r e r e r e e n e e e e 8
ST (oo o o P 9
B A =T 114 =T o OO TP PR 10
R T 1 = 0T 4 o] o Yo T =] TP PP P PP PP 10
2.9 IRELRIFE ettt s h e Rt ettt s ne et e sreesreenreere e 11
2,00 TRE.TASKS ettt h e r e Rt e n et s e n e s e sreesreesreenreereean 12

st 1 I T 13

1 MODULE SUPPORT

Module and message names are not case-sensitive. JSON key names are case-sensitive.

1.1 SUPPORTED MODULE LIST

Module Name
Core

Char
Char.Skills
Char.ltems
Comm.Channel
Room
Redirect
IRE.Composer
IRE.Display
IRE.FileStore
IRE.Misc
IRE.Rift
IRE.Sound
IRE.Tasks
IRE.Time

IRE.Wiz

Purpose

Core functionality

Information about a character

Information about skills known by the player

Information about items in a player’s inventory and room
Identification of communication channels and players on the channel
Various information about the current room

Redirect output to another window

IRE-specific, used for editing bigger texts client-side

Used by the HTML 5 client

Used internally by the IRE Clients

Used internally by the IRE Clients

IRE-specific, transmits information about a player’s Rift contents
IRE-specific, support for playing sound effects in the HTML5 client only
Information about player tasks

IRE-specific, used for sending the current Achaean date and time

Used internally by the IRE Clients

1.2 SuPPORTED COMMANDS PER MODULE

Module Name

Core

Char

Char.Skills

Sent By Client Sent By Server
Core.Hello Core.Ping
Core.Supports.Set Core.Goodbye

Core.Supports.Add
Core.Supports.Remove
Core.KeepAlive

Core.Ping

Char.Login Char.Status
Char.StatusVars
Char.Vitals

Char.Skills.Get Char.Skills.Groups

Char.Skills.Info
Char.Skills.List

Char.ltems Char.ltems.Contents Char.ltems.Add
Char.ltems.Inv Char.ltems.List

Char.ltems.Remove

Char.ltems.Update

Comm.Channel Comm.Channel.Players Comm.Channel.End
Comm.Channel.List
Comm.Channel.Players
Comm.Channel.Start
Comm.Channel.Text

Room Room.AddPlayer
Room.Info
Room.Players
Room.RemovePlayer
Room.WrongDir

Redirect Redirect.Window
IRE.Composer IRE.Composer.SetBuffer IRE.Composer.Edit
IRE.Rift IRE.Rift.Request IRE.Rift.Change
IRE.Rift.List
IRE.Tasks IRE.Tasks.Request IRE.Tasks.List

IRE.Tasks.Completed

IRE.Time IRE.Time.Request IRE.Time.List
IRE.Time.Update

2 MODULE DETAILS

2.1 CORE

Sent by client:
* Core.Hello
o Needs to be the first message that the client sends, used to identify the client.
o Message body is an object with the keys "client" and "version" containing the client’s
name and version
e.g. Core.Hello { "client": "Nexus", "version": "3.1.90" }

* Core.Supports.Set

o Notifies the server about what GMCP modules are supported by the client.

o If another Core.Supports.* message has been received earlier, the list is deleted and
replaced with this new one.

o Message body is an array of strings, each consisting of the module name and whether it
is enabled, separated by a space.

o Most client implementations will only need to send Set once and won’t need
Add/Remove; exceptions are module implementations provided by plug-ins.
e.g. Core.Supports.Set ["Char 1", "Char.Skills 1", Char.ltems 1"]

¢ Core.Supports.Add
o Similar to .Set but appends the supported module list to the one sent by an earlier .Set
message.
o If no.Set message has been sent yet, the behaviour of .Add is identical to that of .Set
o Ifthe list includes module names that were already included earlier, information sent in
the .Add takes precedence.
o Message body format is identical to that of .Set.

* Core.Supports.Remove
o Removes the specified modules from the list of supported modules.
o Message body format is similar to Set, but any appended 1 or O is ignored.
e.g. Core.Supports.Remove ["Char", "Char.Skills", "Char.ltems"]

* Core.KeepAlive
o Causes the server to reset the timeout for the logged in character. Has no body.

* Core.Ping
o Causes the server to send a Core.Ping message back
o Message body is a number which indicates average ping time from previous requests, if
available.
e.g. Core.Ping 120

Sent by server:
* Core.Ping
o Sentin reply to client-initiated Core.Ping. Has no body.

* Core.Goodbye
o Sent by server immediately before terminating a connection.
o Message body is a string to be shown to the user — it can explain the reason for the
disconnect.
e.g. Core.Goodbye "Goodbye, adventurer"

2.2 CHAR

Sent by client:

* Char.Login

o

Sent by server:

Used to log in a character, only interpreted if no character is logged in for that
connection
Message body is an object with keys "name" and "password"

e.g. Char.Login { "name": "somename", "password": "somepassword" }

* Char.Vitals

O O O O O

Basic character attributes such as health, mana, etc.

Message body is an object containing several variables

Additionally, each variable is included in a string, in the format name:current/max
Interpretation of the variables is game-specific.

It is generally safe to assume that the values are numbers (even though encoded as
strings).

e.g. Char.Vitals { "hp": "4500", "maxhp": "4800", "mp": "1200", "maxmp": "2500",
"ep": "15000", "maxep": "16000", "wp": "14000", "maxwp": "15000", "nl": "10",
"string": "H:4500/4800 M:1200/2500 E:15000/16000 W:14000/15000 NL:10/100" }

* Char.StatusVars

O
O
O

Sent by the server after a successful login or after the module is enabled.

Contains a list of character variables (level, race, etc).

Message body is an object where each contained element is a name-caption pair, name
is the internal name and caption the user-visible one.

e.g. Char.StatusVars { "level": "Level", "race": "Race", "house": "House" }

* Char.Status

O
O

Values of character variables defined by .StatusVars

A full list is sent by the server right after StatusVars and changes are sent in subsequent
messages as they occur.

With the exception of the initial Status message, messages only contain changed values;
if a variable is not included, it has not changed since the previous Status message
Message body is an object where contained elements are name-value pairs, name is the
internal name defined by the StatusVars message and value is the variable value.

e.g. Char.Status { "level": "58", "city": "Mhaldor" }

2.3 CHAR.SKILLS

Sent by client:

* Char.Skills.Get

[©)
O
O

Sent by server:

Sent by client to request skill information

Message body is an object with keys "group" and "name"

If both group and name is provided, the server will send Char.Skills.Info for the specified
skill

If group is provided but name is not, the server will send Char.Skills.List for that group
otherwise the server will send Char.Skills.Groups

e.g. Char.Skills.Get { "group": "elementalism", "name": "firelash" }

* Char.Skills.Groups

O O O O

Groups of skills available to the character

Sent by server on request or at any time (usually if the list changes)

For IRE games, groups are skills like Survival or Elementalism

message body is an array of strings, each being one name

e.g. Char.Skills.Groups ["Survival", "Enchantment", "Elementalism", "Crystalism"]

* Char.Skills.List

O O O O

List of skills in a group available to the character

Sent by server on request only

For IRE games, this is the list visible on AB <skillname>

Message body is an object with keys "group" and "list", where group is the group name
as a string

The list value is an array of strings, each being the name of one skill

e.g. { "group": "Elementalism", "list": ["Channel", "Light", "Gust"] }

* Char.Skills.Info

O
O
O

Information about a single skill, only sent upon request

Message body is an object, keys are "group", "skill", and "info", values are strings
Group and skill identify the request, info is a description (usually multi-line) of the skill's
functionality and usage

e.g. Char.Skills.Info { "group": "Elementalism", "skill": "Firelash", "blah blah" }

2.4 CHAR.ITEMS

Sent by client:
* Char.ltems.Contents
o Sent by client to request the contents of an item in the player’s inventory
o Message body is a number identifying the item, causes the server to send back an
appropriate Char.ltems.List message.’
e.g. Char.ltem.Contents 12345

* Char.ltems.Inv
o Sent by client to request a list of the items in the player’s inventory
o Message body is empty, causes the server to send back an appropriate Char.ltems.List
message
e.g. Char.ltems.Inv ""
Sent by server:
* Char.ltems.Add
o Informs the client about an item being added to the specified location
o Message body is an object with keys "location" and "item"
o Location is same as with List, item is an object with the same structure as one from the
items array of List
E.g. Char.ltems.Add { "location": "room", "item": { "id": "60572", "name": "an ornate
steel rapier" } }

* Char.ltems.List
o List of items at a specified location (room, inv, held container)
o Message body is an object with keys "location" and "item"
E.g. Char.ltems.List { "location": "inv", "items": [{ "id": "26545", "name": "a red ink",
"attrib": "gr" }, { "id": "60572", "name": "an ornate steel rapier" }] }

* Char.ltems.Remove
o Removes an item from the list of items in the player’s inventory or current room
E.g. Char.ltems.Remove { "location": "inv", "item": { "id": "60572", "name": "an
ornate steel rapier" } }

* Char.ltems.Update
o Updates the details about an item in the players inventory or the current room.
E.g. Char.ltems.Update { "location": "inv", "item": { "id": "60572", "name":
"an ornate steel rapier" } }

2.5 ComM.CHANNEL

Sent by client:
* Comm.Channel.Players
o Sent by client to request a list of all visible players and the channels that are shared.
e.g. Comm.Channel.Players ""

Sent by server:
* Comm.Channel.End (depreciated)
o Indicates the end of communication on a channel you can hear
E.g. Comm.Channel.End "says"

* Comm.Channel.List
o Alisting of all the communication channels available to a player including the name, the
command to access it, and any caption that appears on it.

E.g. Comm.Channel.List [{ "name": "newbie", "caption": "Newbie", "command":

"newbie" }, { "name": "market", "caption": "Market", "command": "market" }]

* Comm.Channel.Players

o list of players and organizations (city, house, ...) that they share with this player

o message body is an array with each element describing one player

o each element is an object with keys "name" and "channels", name is a string, channels is
an array

o the channels array may be omitted if empty; if given, it is a list of organization names
E.g. Comm.Channel.Players [{"name": "Playerl", "channels: ["Some city", "Some
house"]}, {"name": "Player2"}]

o

* Comm.Channel.Start (depreciated)
o Indicates the start of communication on a channel you can hear.
E.g. Comm.Channel.Start "says"
* Comm.Channel.Text
o The text of the communication that you heard, who spoke, and which channel it was on

E.g. Comm.Channel.Text { "channe says", "talker": "Tecton", "text": "(Tecton the

Terraformer says, \"Are we releasing dragon lairs or the phase artefact first?\"" }

2.6 Roowm

Sent by server:

* Room.Info

o

o

Contains information about the room that the player is in. Some of these may be IRE-
specific
Message body is an object with the following keys
= "num" - number identifying the room
= "name" - string containing the brief description
= "area" - string containing the area name
= "environment" - string containing environment type ("Hills", "Ocean", ...)
= "coords" - room coordinates (string of numbers separated by commas —
area,X,Y,X,building — building is optional)
= "map" - map information - URL pointing to a map image, followed by X and Y
room (not pixel) coordinates on the map
= "details" - array holding further information about the room - shop, bank,...
= "exits" - object containing exits, each key is a direction and each value is the
number identifying the target room
E.g. Room.Info {"num": 12345, "name": "On a hill", "area": "Barren hills",
"environment": "Hills", "coords": "45,5,4,3", "map":
"www.achaea.com/irex/maps/clientmap.php?map=45&Ievel=3 5 4", "exits": { "n":
12344, "se": 12336 }, "details": ["shop", "bank"] }

* Room.WrongDir

o

Sent if the player tries to move in a non-existant direction using the standard movement
commands. Upon receiving this message, the client can safely assume that the specified
direction does not lead anywhere at this time

Message body is a string with the name of the non-existant exit

E.g. Room.WrongDir "ne"

* Room.Players

o

Object containing player details, each key is the short name of the player and each value
is the full name including titles for the player

E.g. Room.Players {"tecton":"Tecton, the Terraformer", "cardan":"Cardan, the
Curious"}

* Room.AddPlayer

o

Message body has the same object structure as Room.Players except that it only
contains the one player being added to the room.
e.g. Room.AddPlayer { "name": "Cardan", "fullname": "(Cardan, the Curious)" }

* Room.RemovePlayer

o

Message body has the same object structure as Room.Players except that it only
contains the one player being removed from the room.
e.g. Room.RemovePlayer "Cardan"

2.7 REDIRECT

Sent by server:

* Redirect.Window

[©)
O
O

Specifies a window to redirect further input to

Message body is a string specifying the window to redirect to

The main window is referred to as "main", and is the default if the message body is
omitted or empty.

E.g. Redirect.Window "map"

2.8 IRE.COMPOSER

Sent by client:

* |RE.Composer.SetBuffer

o

Sent by server:

Sent by the client upon successfully editing a text which was sent to the client in an
IRE.Composer.Edit message earlier

Sending this message only changes the edit buffer and does not end the editing session
On IRE games, the client may send the command *save to save a text, or the command
*quit to abort editing (IRE.Composer.SetBuffer is not sent in this case) - this behaviour is
IRE-specific and is one of the reasons why the Composer module is in the IRE namespace
e.g. IRE.Composer.SetBuffer "Some written text."

¢ |RE.Composer.Edit

o

sent by the server when the player enters an in-game editor. Body is an object, with
keys "title" and "text". Text contains the current buffer, title is a title that can be shown
to the user

e.g. IRE.Composer.Edit { "title": "Composer", "text": "" }

2.9 IRE.RIFT

Sent by client:
* |RE.Rift.Request
o Sent by client to request the server send the contents of the player rift in an IRE.Rift.List
message. Request message has no body.
e.g. IRE.Rift.Request

Sent by server:
* |RE.Rift.List

o contents of a Rift storage

o sent upon receiving the IRE.Rift.Request message

o message body is an array, with each element being an object containing three keys
= "name"isitem name
= "amount" is a number holding the item's amount, and
= "desc" is user-visible description

E.g. IRE.Rift.List [{ "name": "torus", "amount": "2", "desc": "crystal torus" }, { "name":

"sphere", "amount": "2", "desc": "crystal sphere" }, { "name": "iron", "amount": "20",
"desc": "iron" }]
* |RE.Rift.Change
o sent whenever the item amount in a Rift changes
o message body is an object with the same structure as one element of an array sent with
the IRE.Rift.List message

E.g. IRE.Rift.Change { "name": "silver", "amount": "13", "desc": "silver bar" }

2.10 IRE.TASKS

Sent by client:
IRE.Tasks.Request

Sent by server:
IRE.Tasks.List

Sent by client to request tasks information. Message has no body.
E.g. IRE.Tasks.Request

List of players tasks, both completed and active.
message body is an array, with each element being an object containing seven keys.

= "id" - numeric id for task

= "name" - title of task

= "desc" - verbose description of task

= "type" - Type of task.

= "cmd" - The command used to complete the task

= status" - boolean of whether task has been completed or not

= "group" - Group task is organised into. All tasks are moved to the 'Completed'

group once completed.

E.g. IRE.Tasks.List [{ "id": "1", "name": "Break Free of Your Imprisonment", "desc":
"Where are you? What's going on? There's no time to waste, you need to get out of
here!\n\nPay close attention to the directions and tips on your screen and you'll be
out of the dungeon in no time.", "type": "Task", "cmd": "TASK 1 INFO", "status": "1",
"group": "Completed" }, { "id": "8", "name": "Using TASKS", "desc": "To help you learn
all the essential commands to play Achaea, you have been given a checklist of things
to do. You can view them all by typing \"TASKS\". To see the tasks you have already
finished, use \"TASKS COMPLETED\".\n\nYou can do these in any order you like, but
don't forget the mission your friends gave you to investigate Beku! To get started,
take a look at \"TASK 12\".", "type": "Task", "cmd": "TASK 8 INFO", "status": "1",
"group": "Completed" }, { "id": "30", "name": "Greet the Pixie Queen or the Imp
Lord", "desc": "In addition to the pygmies, several other groups of denizens live in the
land of Minia. Many of them need help and will gladly send you on quests, which
reward you with gold and experience! \"HELP NEWBIE QUESTS\" lists many such
quests!\n\nFor this task, travel to the pixie village, find the pixie queen, and \"GREET
QUEEN\" to see what she needs. You can also go to the Ember Tower, find the imp
lord, and \"GREET LORD\" to help the imps instead.", "type": "Task", "cmd": "TASK 30
INFO", "status": "0", "group": "Lending a Hand" }]

IRE.Tasks.Completed (not used presently)

2.11 IRE.TIME

Sent by client:
* |RE.Time.Request
o Sent by client to request time information. Message has no body.

E.g. IRE.Time.Request

Sent by server:
¢ |RE.Time.List
o List of time details as current in game.
E.g. IRE.Time.List { "day": "3", "mon": "7", "month": "Valnuary", "year": "649",
"hour": "46", "time": "It is dusk in Achaea.", "moonphase": "Waxing Crescent",
"daynight": "103" }

* |RE.Time.Update
o Sends messages to provide updates to the current In-Game time
E.g. IRE.Time.Update { "daynight": "75" }

